This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713926090

The effects of the bulkiness of terminal chains on the stability of smectics deduced from the crystal structures of isomeric chiral biphenyl esters
 Shoko Kurogoshi; Kayako Hori

Online publication date: 06 August 2010

To cite this Article Kurogoshi, Shoko and Hori, Kayako(1997) 'The effects of the bulkiness of terminal chains on the stability of smectics deduced from the crystal structures of isomeric chiral biphenyl esters', Liquid Crystals, 23: 1, 127 136
To link to this Article: DOI: 10.1080/026782997208730
URL: http://dx.doi.org/10.1080/026782997208730

PLEASE SCROLL DOWN FOR ARTICLE

[^0]
The effects of the bulkiness of terminal chains on the stability of smectics deduced from the crystal structures of isomeric chiral biphenyl esters

by SHOKO KUROGOSHI and KAYAKO HORI*
Department of Chemistry, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112, Japan

(Received 7 January 1997; accepted 6 February 1997)

Abstract

Single crystal X-ray analyses have been performed on 4-octyloxyphenyl 4'-[(S)-1-methylheptyloxy]biphenyl-4-carboxylate ($8 * \mathrm{O}-\mathrm{O} 8$) and $4-[(S)-1$-methylheptyloxy]phenyl 4^{\prime}-octyloxybipheny-4-carboxylate ($8 \mathrm{O}-\mathrm{O} 8^{*}$), with the phase sequences $\mathrm{Cr}-\mathrm{SmC}{ }^{*}-\mathrm{Ch}-\mathrm{I}$ and $\mathrm{Cr}-\mathrm{SmX}-\mathrm{SmC}^{*}-\mathrm{SmA}-\mathrm{I}$, respectively. Both crystals have smectic-like layer structures, in which the molecular tilt angles are 10° and 30°, respectively. In the crystal phase of $8^{*} \mathrm{O}-\mathrm{O} 8$, biphenyl moieties are twisted probably because of steric hindrance of the bulky chiral chains linked to them, whereas in 8O-O8* they are nearly planar due to the conjugation between the alkoxy oxygen atoms and the carbonyl groups. From comparison of the properties with those of other related compounds, it is concluded that the conformation of the biphenyl moieties are closely related to the stability of smectic phases.

1. Introduction

For the purpose of elucidating the factors controlling liquid crystalline behaviour, we have attempted to find the relationship of mesogenicity to molecular interactions in crystal structures. As a result of single crystal X-ray analyses of a series of chiral biphenyl esters with the identical core moiety $-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{COO}-\mathrm{C}_{6} \mathrm{H}_{4}$-, it was found that they are classified into three groups in the properties of molecular structure, tilt angle in the crystalline state, and the liquid crystalline phase sequence [1]. In the first group, the biphenyl moiety is sandwiched by an alkoxy oxygen atom and a carbonyl group, which can conjugate through the biphenyl moiety. In the crystal phases, the alkoxy oxygen atoms and the carbonyl groups are closely faced between adjacent molecules, leading to large overlappings of biphenyl moieties, and hence to small tilt angles. Oxygen atoms in alkoxy groups seem to play an important role in the formation of layer structures, especially the SmA phase. In the second and third groups, the biphenyl moiety attaches an alkyl chain and the bulky 2 -methylbutyl group, respectively, resulting in no conjugation as in the first group. In the second group, small tilt angles (large molecular overlappings in a smectic-like layer) are still observed, in accordance with the existence of the SmA phase. In the third group, large tilt angles are observed,

[^1]also related to the existence of a largely tilted SmC^{*} phase or no smectics.

In this work, to elucidate the effects of chiral groups and alkoxy oxygen atoms on crystal packing and mesomorphic behaviour, the following two biphenyl esters were studied. 4-Octyloxyphenyl 4'-[(S)-1-methylhep-tyloxy]biphenyl-4-carboxylate (abbreviated as $8 * \mathrm{O}-\mathrm{O} 8$)

4-[(S)-1-Methylheptyloxy]phenyl 4'-octyloxybiphenyl-4-carboxylate (8O-O8*)

They have identical cores but the terminal n-alkyl and chiral chains are exchanged, to give the different phase sequences: $\mathrm{Cr}-\mathrm{SmC}^{*}-\mathrm{Ch}-\mathrm{I}$ for $8^{*} \mathrm{O}-\mathrm{O} 8$ and $\mathrm{Cr}-\mathrm{SmX}-$ SmC*-SmA-I for 8O-O8* [2].

This paper describes the crystal structures of 8*O-O8 and 80-O8*, and discusses these in relation to the liquid crystalline behaviour in comparison with those of other chiral biphenyl esters.

2. Experimental

Both materials were donated by Chisso Petrochemical Corporation. Phase transition temperatures and enthalpies were measured using a Seiko DSC22C system. Using a Perkin-Elmer System 2000 equipped with an i-Series FT-IR microscope, FT-IR spectra were measured as a function of temperature controlled by a Mettler FP80.

Powder X-ray diffraction patterns were obtained on a Rigaku RU200 diffractometer.

Single crystals were grown from an acetone-methanol solution for $8^{*} \mathrm{O}-\mathrm{O} 8$ and an ethyl acetate-ethanol solution for $8 \mathrm{O}-\mathrm{O} 8 *$. Cell parameter measurements and reflection data collection were done on a Rigaku AFC-7R four-circle diffractometer with CuK_{α} radiation ($\lambda=1.54184 \AA$) at room temperature. The data were collected by $2 \theta-\omega$ scan with scan rates of $8^{\circ} \mathrm{min}^{-1}(2 \theta)$ for $8^{*} \mathrm{O}-\mathrm{O} 8$ and $4^{\circ} \mathrm{min}^{-1}(2 \theta)$ for 8 O -O8* up to $2 \theta=120^{\circ}$. Three standard reflections were measured after every 150 reflections for monitoring the stability of the experimental conditions. No significant change was observed. Corrections were performed for Lorentz and polarization factors, but not for absorption and extinction. Experimental details and crystal data are summarized in table 1 .

The structures were solved by applying the programs SIR-88 [3] for 8*O-O8 and MULTAN-88 [4] for 8O-O8* and refined by the full-matrix least squares method on F^{2} using SHELXL-93 [5]. All the benzene rings were constrained to have regular hexagonal geometry with the $\mathrm{C}-\mathrm{C}$ distance of $1.39 \AA$ and refined as rigid groups. Several bonds in chains were also restrained. In the process of refinement for $8 * \mathrm{O}-\mathrm{O} 8$, terminal atoms with remarkably large temperature factors were disordered or the temper-
ature factors were fixed to be $0 \cdot 3$. For $8 \mathrm{O}-\mathrm{O}^{*}$, since all the carbon atoms in the longer chain of the chiral group had very large temperature factors and small peaks were found around them, they were disordered. All the nonhydrogen atoms, except for the atoms which are disordered or have fixed temperature factors, were refined anisotropically. The positions of the hydrogen atoms attached to the anisotropically refined carbon atoms were calculated geometrically ($\mathrm{C}-\mathrm{H}$ distances; 0.96 for primary, 0.97 for secondary, 0.98 for tertiary and $0.93 \AA$ for aromatic), and the H atoms were included in the intensity calculation but not refined. Final results of refinements are shown in table 1. The large R value of $8 \mathrm{O}-\mathrm{O} 8^{*}$ is attributed to the highly disordered chiral chain and the poor crystallinity. The latter is also responsible for the large ESDs of the lattice parameters. Scattering factors were taken from the International Tables for Crystallography [6]. Tables 2 and 3 give the final atomic coordinates for non-hydrogen atoms of $8 * \mathrm{O}-\mathrm{O} 8$ and $8 \mathrm{O}-\mathrm{O} 8^{*}$, respectively.

3. Results and discussion

3.1. Molecular conformations

Figure 1 shows the molecular structures with numbering schemes for both compounds. For $8 * \mathrm{O}-\mathrm{O} 8$, there are four crystallographically independent molecules (A,

Table 1. Crystal data and final results of refinements.

	8*O-O8	80-O8*
Formula	$\underset{\substack{35 \\ 530.75}}{\mathrm{C}_{46} \mathrm{O}_{4}}$	
Molecular weight		
Crystal shape	plate	
Crystal size/mm	$0.6 \times 0.5 \times 0.05$	$0.4 \times 0.4 \times 0.02$
L.s. for cell const. ${ }^{\text {a }}$	$25\left(40<2 \theta<52^{\circ}\right)$	$19\left(40<2 \theta<54^{\circ}\right)$
Crystal system	triclinic	monoclinic
Space group	P1	$P 2_{1}$
a/A	11.704(3)	31.952(11)
b/Å	34.571(10)	5•527(9)
c/A	8.051(2)	8.971(11)
$\alpha /{ }^{\circ}$	95.15(2)	90
$\beta /{ }^{\circ}$	92.67(2)	90.37(7)
$\gamma /{ }^{\circ}$	97.89(2)	90
V / \AA^{3}	3208(2)	1584(3)
Z	4	2
$d_{x} / \mathrm{gcm}^{-3}$	1.099	$1 \cdot 112$
μ / mm^{-1}	$0 \cdot 548$	$0 \cdot 555$
$F\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$	1152	576
No. of unique reflections	9487	2625
No. of obsd. refl. (>2 $\sigma(I)$)	6569	1385
$R(F)(>2 \sigma(I))^{\mathrm{b}}$	0.0962	0.1204
$w R\left(F^{2}\right)(>2 \sigma(I))^{\text {c }}$	$0 \cdot 3279$	$0 \cdot 3630$
S	1.067	1.034

[^2]Table 2. Atomic coordinates and equivalent isotropic displacement parameters of non-hydrogen atoms for $8^{*} \mathrm{O}-\mathrm{O} 8 . U(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

Atom	x	y	z	$U(\mathrm{eq})$
$\mathrm{O}(1 \mathrm{~A})$	0.4801(6)	0.5349(2)	0.8831(8)	0.098(2)
$\mathrm{O}(2 \mathrm{~A})$	0.5723(4)	0.2392(2)	0.5335(6)	$0 \cdot 075(1)$
$\mathrm{O}(3 \mathrm{~A})$	0.4062(6)	$0 \cdot 2377(2)$	0.3803(9)	$0 \cdot 105(2)$
$\mathrm{O}(4 \mathrm{~A})$	0.5781(5)	0.0807(2)	0.3542(7)	0.089(2)
$\mathrm{C}(1 \mathrm{~A})$	0.4805(4)	0.4975(1)	0.8198(6)	0.073(2)
$\mathrm{C}(2 \mathrm{~A})$	0.5529(4)	0.4762(1)	0.9041(5)	0.071(2)
C(3A)	0.5567(4)	$0 \cdot 4371$ (1)	$0 \cdot 8492(5)$	0.066(2)
$\mathrm{C}(4 \mathrm{~A})$	0.4882(4)	0.4194(1)	$0 \cdot 7100(5)$	0.073(2)
C(5A)	0.4158(4)	$0 \cdot 4408(1)$	$0.6257(5)$	0.076(2)
C (6A)	0.4119(4)	0.4799(1)	0.6806(6)	0.081(2)
C(7A)	0.4887(4)	$0 \cdot 3760$ (1)	0.6510(6)	0.067(2)
C (8A)	0.5832(3)	0.3576(1)	0.6915(6)	$0 \cdot 071$ (2)
C(9A)	$0 \cdot 5839$ (3)	$0 \cdot 3184(1)$	$0 \cdot 6352(6)$	$0 \cdot 071$ (2)
C(10A)	0.4901 (4)	$0 \cdot 2977(1)$	$0 \cdot 5384(6)$	0.069(2)
C(11A)	0.3955(3)	0.3161(1)	0.4980(6)	0.078(2)
C(12A)	0.3948(3)	0.3552(1)	$0 \cdot 5543(6)$	0.075(2)
$\mathrm{C}(13 \mathrm{~A})$	0.4827(7)	0.2561(2)	$0 \cdot 4770$ (10)	0.076(2)
C(14A)	0.5710(4)	0.1992(1)	$0 \cdot 4845(6)$	$0 \cdot 068$ (2)
C(15A)	0.6497(4)	0.1883(1)	$0 \cdot 3714(6)$	0.078(2)
C(16A)	0.6528(4)	$0 \cdot 1488(1)$	$0 \cdot 3238(6)$	0.079(2)
C(17A)	0.5772(4)	$0 \cdot 1203(1)$	$0 \cdot 3894(6)$	0.072(2)
C(18A)	0.4986(4)	$0 \cdot 1312(1)$	0.5025(6)	0.079(2)
C(19A)	0.4955(4)	0.1707(1)	$0 \cdot 5501(6)$	0.080(2)
C(20A)	0.3998(7)	0.5586(2)	$0 \cdot 8206(11)$	0.093(3)
C (21A)	0.2788(8)	$0 \cdot 5452(3)$	$0 \cdot 8642(15)$	0.119(3)
C (22A)	0.4389(11)	$0 \cdot 5999$ (3)	$0 \cdot 8892(14)$	0.122(4)
C (23A)	$0 \cdot 5521$ (11)	$0 \cdot 6185(4)$	$0 \cdot 8337(19)$	0.151(5)
C (24A)	0.5712(15)	$0 \cdot 6609(4)$	0.908(2)	0.172(6)
C (25A)	0.6787(18)	0.6851(5)	$0 \cdot 865(3)$	0.248(11)
C (26A)	0.684(3)	$0 \cdot 7274(6)$	0.932(4)	$0 \cdot 330$ (17)
C (27A)	0.792 (3)	$0 \cdot 7506(11)$	0.882(6)	$0 \cdot 47$ (3)
C (30A)	0.6680(11)	$0 \cdot 0685(3)$	$0 \cdot 2630$ (15)	0.119(3)
$\mathrm{C}(31 \mathrm{~A})$	0.6767(14)	0.0263(3)	$0 \cdot 2920$ (17)	$0 \cdot 155(5)$
$\mathrm{C}(32 \mathrm{~A})$	0.5876(13)	-0.0020(3)	$0 \cdot 195(2)$	0.161(5)
$\mathrm{C}(33 \mathrm{~A})$	0.6108(18)	-0.0440(4)	0.187(2)	0.202(8)
C(34A)	$0 \cdot 534$ (2)	-0.0736(5)	0.073 (3)	$0 \cdot 273$ (14)
$\mathrm{C}(35 \mathrm{~A})$	0.560(2)	-0.1149(5)	0.049(3)	0.266(12)
C(36A)	0.470(2)	-0.1422(8)	-0.059(4)	$0 \cdot 300$
C(37A)	0.529(3)	-0.1785(8)	-0.074(4)	$0 \cdot 300$
$\mathrm{O}(1 \mathrm{~B})$	0.2121(5)	0.5151(2)	0.4074(7)	0.090(2)
$\mathrm{O}(2 \mathrm{~B})$	0.4218(7)	0.2431(2)	-0.1247(9)	0.113(2)
$\mathrm{O}(3 \mathrm{~B})$	0.2636(4)	0.2185(2)	$-0.0003(7)$	0.079(1)
$\mathrm{O}(4 \mathrm{~B})$	0.3502(6)	0.0687(2)	-0.1994(8)	0.103(2)
C(1B)	0.2155(4)	0.4776(1)	0.3289(6)	0.076(2)
C(2B)	0.2964(4)	$0 \cdot 4730$ (1)	0.2104(6)	0.072(2)
C(3B)	0.3102(4)	$0 \cdot 4357(1)$	$0 \cdot 1423$ (5)	0.073(2)
C (4B)	0.2431(4)	0.4029(1)	$0 \cdot 1928(6)$	$0 \cdot 072(2)$
C(5B)	0•1621(4)	0.4075(1)	0.3113(6)	0.085(2)
C (6B)	0•1483(4)	0.4449(2)	0.3794(6)	0.085(2)
C(7B)	0.2632(4)	0.3620(1)	$0 \cdot 1220$ (6)	0.070(2)
C(8B)	0.3713(4)	$0 \cdot 3569(1)$	$0 \cdot 0665(7)$	0.079(2)
$\mathrm{C}(9 \mathrm{~B})$	0.3942(3)	0.3196(2)	$0 \cdot 0118(7)$	0.093(3)
C(10B)	0.3090(4)	0.2874(1)	$0 \cdot 0126(7)$	0.074(2)
C(11B)	0-2009(4)	0.2925(1)	$0 \cdot 0681$ (7)	0.091(2)
$\mathrm{C}(12 \mathrm{~B})$	0•1779(3)	0.3298(1)	$0 \cdot 1228(7)$	0.092(2)
C(13B)	0.3383(7)	$0 \cdot 2480$ (2)	-0.0503(10)	$0 \cdot 081$ (2)
$\mathrm{C}(14 \mathrm{~B})$	0.2878(4)	0.1807(1)	-0.0426(6)	0.073(2)
C(15B)	0.3821(4)	0.1666(1)	0.0298(6)	0.079(2)
C(16B)	0.4037(4)	0.1288(2)	-0.0188(6)	0.082(2)

Table 2. (continued).

Atom	x	y	z	$U(\mathrm{eq})$
C(17B)	0.3311(5)	0•1051(1)	-0.1399(6)	0.081(2)
C(18B)	0.2368(4)	$0 \cdot 1192(1)$	-0.2123(6)	0.087(2)
C(19B)	0.2152(4)	0•1570(2)	-0.1637(6)	0.085(2)
C(20B)	0.1323(9)	0.5370(3)	0.3268(13)	0.108(3)
C(21B)	0.0087(9)	0.5209(4)	$0 \cdot 351$ (2)	$0 \cdot 164(6)$
$\mathrm{C}(22 \mathrm{~B})$	$0 \cdot 1591$ (11)	0.5791(3)	0.3980(15)	0•127(4)
C(23B)	$0 \cdot 2713(13)$	0.6010(4)	$0 \cdot 3567(19)$	$0 \cdot 167(6)$
C(24B)	0.2912(17)	0.6434(4)	$0 \cdot 427(2)$	$0 \cdot 180(7)$
C(25B)	$0 \cdot 3897(17)$	0.6706(5)	$0 \cdot 375$ (3)	$0 \cdot 219$ (8)
C(26B)	$0 \cdot 3988(18)$	0.7133(5)	$0 \cdot 442$ (4)	0.258(13)
C(27B)	$0 \cdot 5248(19)$	$0 \cdot 7281$ (11)	0.437 (5)	$0 \cdot 232(14)$
C (27B')	$0 \cdot 479$ (6)	$0 \cdot 7355(18)$	$0 \cdot 331$ (9)	0.28(3)
C(30B)	$0 \cdot 4528(10)$	0.0554(3)	-0.1537(13)	0•112(3)
C(31B)	$0 \cdot 4703(10)$	0.0203(3)	-0.2674(14)	0•115(3)
$\mathrm{C}(32 \mathrm{~B})$	$0 \cdot 3764(11)$	-0.0144(3)	-0.2751(15)	0•132(4)
C(33B)	$0 \cdot 3959(14)$	-0.0483(3)	-0.3950(17)	0.156(5)
C(34B)	0.3067(16)	-0.0840(4)	-0.390(2)	0.207(8)
C(35B)	$0 \cdot 3322(19)$	-0.1178(6)	-0.506(3)	0.215(9)
C(36B)	0.251(2)	-0.1552(7)	-0.504(4)	0.303(14)
C(37B)	0.288(3)	-0.1873(8)	-0.619(4)	$0 \cdot 300$
$\mathrm{O}(1 \mathrm{C})$	0.0956(6)	0.0520(2)	$0 \cdot 2521$ (10)	0.117(2)
$\mathrm{O}(2 \mathrm{C})$	0.0301(4)	0.3486(2)	0.6376(6)	0.077(1)
$\mathrm{O}(3 \mathrm{C})$	-0.1238(7)	0.3234(2)	$0 \cdot 7665(11)$	$0 \cdot 129(3)$
$\mathrm{O}(4 \mathrm{C})$	-0.0478(5)	0.4984(2)	$0 \cdot 8534$ (7)	0.087(1)
$\mathrm{C}(1 \mathrm{C})$	0.0865(6)	0.0899(1)	0.3177(8)	0.097(3)
$\mathrm{C}(2 \mathrm{C})$	-0.0058(5)	0.0952(1)	0.4158(9)	0.126(4)
C(3C)	-0.0208(4)	0.1326(2)	0-4807(8)	0.105(3)
$\mathrm{C}(4 \mathrm{C})$	0.0566(5)	0•1649(1)	0.4475(7)	0.073(2)
C(5C)	0.1489(5)	0•1596(1)	0.3494(8)	0.092(2)
C(6C)	$0 \cdot 1639$ (5)	$0 \cdot 1222(2)$	02845(7)	0.102(3)
$\mathrm{C}(7 \mathrm{C})$	0.0337(4)	0-2055(1)	0.5113(7)	0.070(2)
C(8C)	-0.0726(4)	0-2101(1)	0.5746(8)	$0 \cdot 105(3)$
C(9C)	-0.0954(4)	0.2472(2)	0.6329(8)	0.104(3)
$\mathrm{C}(10 \mathrm{C})$	-0.0118(5)	0-2797(1)	$0 \cdot 6277$ (7)	0.079(2)
$\mathrm{C}(11 \mathrm{C})$	0.0945(4)	0-2752(1)	0.5644(9)	0.108(3)
$\mathrm{C}(12 \mathrm{C})$	0.1173(4)	$0 \cdot 2381$ (2)	$0 \cdot 5062$ (8)	0.114(4)
C(13C)	$-0.0430(8)$	0.3181(3)	$0 \cdot 6832(10)$	0.085(2)
C(14C)	0.0063(4)	0.3858(1)	$0 \cdot 6881$ (6)	0.075(2)
C(15C)	-0.0873(4)	0-4006(1)	0.6175(6)	0.085(2)
C (16C)	-0.1074(4)	0.4384(2)	0.6690(6)	0.082(2)
C(17C)	-0.0339(4)	0.4614(1)	0.7910(6)	0.075(2)
C(18C)	0.0597(4)	0-4466(1)	0.8616(6)	0.083(2)
C (19C)	0.0798(4)	0.4088(1)	0•8101(6)	0.075(2)
C(20C)	$0 \cdot 2062(13)$	0.0411(3)	0.2086(14)	0.133(4)
C(21C)	$0 \cdot 2780$ (14)	0.0413 (5)	0.368(2)	0.200(8)
C(22C)	$0 \cdot 183(2)$	0.0024(3)	0.1067(18)	0.226(11)
C(23C)	0.1266(15)	-0.0325(4)	$0 \cdot 1853(19)$	$0 \cdot 175$ (6)
C(24C)	$0 \cdot 119$ (2)	-0.0671(4)	$0 \cdot 054(2)$	0.256(12)
C(25C)	$0 \cdot 043$ (2)	-0.1038(5)	$0 \cdot 085(4)$	$0 \cdot 345$ (19)
C(26C)	$0 \cdot 038(3)$	-0.1431(6)	-0.012(4)	$0 \cdot 329$ (16)
C(27C)	0.097(3)	-0.1495(11)	-0.170(4)	0.277(14)
$\mathrm{C}\left(27 \mathrm{C}^{\prime}\right)$	-0.025(6)	-0.1776(16)	0.062(8)	0.25(3)
C(30C)	-0.1487(8)	0.5136(3)	$0 \cdot 7992(13)$	0•104(3)
C(31C)	-0.1404(10)	0.5537(3)	$0 \cdot 8928(16)$	0.133(4)
C(32C)	-0.0408(12)	0.5826(3)	$0 \cdot 8498(18)$	$0 \cdot 147(4)$
C(33C)	-0.0210(15)	$0 \cdot 6234$ (4)	$0 \cdot 9244$ (19)	0.166(6)
C(34C)	$0 \cdot 0864(16)$	0.6494(6)	$0 \cdot 887$ (3)	0.192(7)
C(35C)	$0 \cdot 113$ (3)	$0 \cdot 6912$ (7)	$0 \cdot 962(4)$	0.257(15)
C(36C)	$0 \cdot 224$ (3)	0.7104(7)	$0 \cdot 900$ (5)	0.37(2)
C(37C)	$0 \cdot 201(3)$	0.7522(8)	0.908(4)	$0 \cdot 300$
$\mathrm{O}(1 \mathrm{D})$	-0.1807(8)	0.0326(2)	-0.2602(13)	0•150(3)

Table 2. (continued).

Atom	x	y	z	$U(\mathrm{eq})$
O (2D)	-0.2738(4)	0.3293(2)	0•1080(6)	0.078(1)
$\mathrm{O}(3 \mathrm{D})$	-0.1083(6)	$0 \cdot 3299$ (2)	0.2624(8)	0•107(2)
O (4D)	-0.2821(5)	0.4858(2)	0.2890(7)	0.089(2)
C(1D)	-0.1763(6)	0.0715(1)	-0.1916(8)	0.099(3)
C(2D)	-0.2574(5)	0.0920(2)	-0.2622(7)	0.097(3)
C(3D)	-0.2608(5)	0.1310(1)	-0.2047(6)	0.087(2)
C(4D)	-0.1832(5)	$0 \cdot 1494$ (1)	-0.0766(6)	0.067(2)
C (5D)	-0.1021(5)	0.1289(2)	-0.0060(7)	$0 \cdot 110$ (3)
C(6D)	-0.0986(6)	0.0900(2)	-0.0635(9)	0•128(4)
C(7D)	-0.1886(4)	0•1921(1)	-0.0117(6)	0.067(2)
C (8D)	-0.2822(3)	$0 \cdot 2107(1)$	-0.0545(6)	0.079(2)
C(9D)	-0.2833(3)	0.2498(1)	0.0033(6)	0.075(2)
C(10D)	-0.1908(4)	$0 \cdot 2702(1)$	0•1040(6)	0.073(2)
C(11D)	-0.0972(4)	0.2516(1)	0.1468(6)	0.082(2)
C(12D)	-0.0961(3)	$0 \cdot 2125$ (1)	0.0890(6)	0.078(2)
C(13D)	-0.1859(7)	$0 \cdot 3118(2)$	$0 \cdot 1677$ (9)	0.076(2)
C(14D)	-0.2721(4)	0.3682(1)	0•1601 (6)	0.070(2)
C(15D)	-0.3541(4)	0.3788(1)	0.2684(6)	0.079(2)
C(16D)	-0.3596(4)	0.4182(1)	0.3146(6)	0.077(2)
C(17D)	-0.2830(4)	$0 \cdot 4470$ (1)	0.2525(6)	0.076(2)
C(18D)	-0.2010(4)	0.4365(1)	$0 \cdot 1442$ (6)	0.075(2)
C(19D)	-0.1955(4)	$0 \cdot 3971$ (1)	0.0980(5)	0.073(2)
C(20D)	-0.0944(19)	0.0124(4)	-0.243(2)	$0 \cdot 229$ (10)
C(21D)	-0.133(2)	$-0.0037(6)$	-0.083(2)	0.242(9)
C(22D)	-0.095(2)	-0.0201(6)	-0.378(2)	0.308(18)
C(23D)	-0.182(3)	-0.0547(9)	-0.356(4)	0.46(3)
C(24D)	-0.144(3)	-0.0824(7)	-0.491(4)	0.52(3)
C (25D)	-0.218(3)	-0.1184(8)	-0.446(4)	0.44(3)
C(26D)	-0.201(3)	-0.1487(12)	-0.585(5)	$0 \cdot 47$ (3)
C(27D)	-0.283(5)	-0.1836(13)	-0.549(6)	0.50(4)
C(30D)	-0.3737(8)	$0 \cdot 4991$ (3)	$0 \cdot 3832(14)$	0•110(3)
C(31D)	$-0.3742(13)$	0.5423(4)	0.363(3)	0.222(11)
C(32D)	-0.2714(16)	$0 \cdot 5718(5)$	$0 \cdot 407(2)$	0.38(3)
C(33D)	-0.3074(19)	0.6088(4)	0.352(2)	0.193(9)
C(34D)	-0.1904(18)	0.6315 (5)	0.405(3)	0.221(11)
C(35D)	-0.175(2)	$0 \cdot 6746$ (5)	0.388(3)	0.208(8)
C(36D)	-0.056(3)	$0 \cdot 6941$ (9)	$0 \cdot 445$ (4)	0.38(2)
C(37D)	-0.036(3)	0.7355(9)	$0 \cdot 401$ (4)	0.371(19)

Occupancies for $27(B)$ and $27(C), 0 \cdot 6 ; 27\left(B^{\prime}\right)$ and $27\left(C^{\prime}\right), 0 \cdot 4$.

B, C and D). The biphenyl moieties of all the molecules are twisted, with the dihedral angles of $22 \cdot 2(4)^{\circ}$ (A), $25 \cdot 5(4)^{\circ}(\mathrm{B}), 13 \cdot 2(5)^{\circ}(\mathrm{C})$ and $13 \cdot 7(5)^{\circ}(\mathrm{D})$. The chiral chains have almost all-trans conformations except for the terminal disordered atoms in molecules B and C , while in the normal chains the $\mathrm{O} 4-\mathrm{C} 30-\mathrm{C} 31-\mathrm{C} 32$ moieties have gauche conformations, with the torsion angles of $77.9(15)^{\circ}(\mathrm{A}),-58.2(14)^{\circ}(\mathrm{B}), 64 \cdot 9(13)^{\circ}(\mathrm{C})$ and $-57(2)^{\circ}(\mathrm{D})$.

In 8O-O8*, on the other hand, the dihedral angle of the biphenyl moiety is $3 \cdot 1(8)^{\circ}$, being nearly planar. The normal chain has an almost all-trans conformation, whereas the chiral chain is twisted and largely disordered.

3.2. Crystal packing

Figures 2 and 3 represent the crystal structures viewed along the c axis for $8^{*} \mathrm{O}-\mathrm{O} 8$ and the b axis for $8 \mathrm{O}-\mathrm{O} 8^{*}$, respectively. Both crystals have smectic-like layer structures. In the crystal of $8^{*} \mathrm{O}-\mathrm{O} 8$, the large overlapping as a whole leads to the small tilt angle (10°) of the molecular long axis in a layer. Cores and chains among laterally neighbouring molecules are separately overlapped as a whole. Parallel pairs are formed between the molecules A and B and also C and D , in which ester linkages are closely arranged each other; the distances between O3A-O2B and O3D-O2C are approximately $3 \cdot 4 \AA$ and $3 \cdot 3 \AA$, respectively. These pairs are further arranged in an antiparallel way.

Table 3. Atomic coordinates and equivalent isotropic displacement parameters of non-hydrogen atoms for $8 \mathrm{O}-\mathrm{O} 8^{*} . U(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

Atom	x	y	z	$U(\mathrm{eq})$
$\mathrm{O}(1)$	0.6254(3)	0.449(2)	0.236(9)	0•107(3)
$\mathrm{O}(2)$	0.3442(3)	0.373(2)	0.6392 (10)	0.110(3)
$\mathrm{O}(3)$	$0 \cdot 3269$ (3)	0.699(3)	$0 \cdot 5082$ (9)	$0 \cdot 128(4)$
$\mathrm{O}(4)$	0•1858(4)	0.375(3)	$0 \cdot 8921$ (14)	0•147(5)
C(1)	$0 \cdot 5865(2)$	0.467(2)	0.0855(9)	0.093(4)
C(2)	0.5587(3)	0.6554(19)	0.0589(8)	0•100(4)
C(3)	0.5204(3)	0.661 (2)	0.1316(9)	0.106(4)
C(4)	0.5100(2)	0.478(2)	$0 \cdot 2310$ (9)	0.092(4)
C(5)	0.5379(3)	0.290(2)	$0 \cdot 2577$ (9)	0.105(4)
C(6)	0.5761(3)	0.284(2)	$0 \cdot 1850$ (10)	0•118(5)
$\mathrm{C}(7)$	$0 \cdot 4681$ (2)	0.485(2)	0.3094(9)	0.087(4)
C(8)	0.4406(3)	0.674(2)	0-2792(9)	$0 \cdot 111$ (5)
C(9)	0-4028(3)	$0 \cdot 689$ (2)	$0 \cdot 3548(10)$	$0 \cdot 124(5)$
C(10)	0.3926(3)	0.516(2)	$0 \cdot 4606(10)$	0.094(4)
C(11)	$0 \cdot 4201$ (3)	0.327(2)	0-4908(9)	0.108(4)
C(12)	$0 \cdot 4578$ (3)	0.311(2)	0.4152(9)	0.099(4)
C(13)	0.3518(3)	0.541(3)	$0 \cdot 5403(12)$	0.093(4)
C(14)	0.3041(3)	0.366(2)	$0 \cdot 7068(11)$	0.117(5)
C(15)	0-2920(3)	0.548(2)	$0 \cdot 8043(11)$	0.118(5)
C(16)	0-2524(4)	$0 \cdot 543$ (2)	$0 \cdot 8674(10)$	0.111(4)
C(17)	$0 \cdot 2249$ (3)	0.356(3)	$0 \cdot 8330$ (12)	$0 \cdot 126(5)$
C(18)	$0 \cdot 2370$ (4)	$0 \cdot 174(2)$	$0 \cdot 7355$ (12)	$0 \cdot 120$ (5)
C(19)	0.2766(4)	0.179(2)	$0.6724(10)$	$0 \cdot 121$ (5)
$\mathrm{C}(20)$	$0 \cdot 6395(4)$	0.629(3)	-0.0692(13)	0.109(5)
C(21)	0.6844(4)	$0 \cdot 591$ (3)	-0.1137(14)	0.118(5)
C(22)	0.7018(5)	0.790(3)	-0.2114(17)	0.131(6)
C(23)	$0 \cdot 7472$ (5)	$0 \cdot 770$ (3)	-0.2474(16)	0.131(6)
C(24)	0.7653(5)	0.983(3)	-0.3286(18)	0.138(6)
C(25)	0.8119(5)	0.990(5)	-0.349(2)	0•184(11)
C(26)	$0 \cdot 8241$ (9)	1-203(5)	-0.442(3)	0.27(2)
C(27)	$0 \cdot 8701$ (9)	$1 \cdot 17$ (1)	-0.461(4)	0.33(3)
C(30)	0•1550(5)	0.209(4)	$0 \cdot 871$ (3)	0.203(13)
C(31)	0•1629(9)	0.019(5)	0.989(4)	0.244(16)
$\mathrm{C}(32)$	0.1183(10)	0.380(6)	$0 \cdot 861$ (5)	$0 \cdot 132(11)$
$\mathrm{C}\left(32{ }^{\prime}\right)$	0.1129(8)	0.268(9)	0.94(4)	$0 \cdot 142(13)$
C(33)	0.099(3)	0.60(1)	0.79(1)	0.40(7)
C(33')	$0 \cdot 0914$ (19)	0.31(1)	0.79(5)	0.22(2)
C(34)	0.053(3)	0.54(3)	0.79(1)	0.34(7)
$\mathrm{C}\left(34{ }^{\prime}\right)$	0.057(4)	0.30(3)	0.91(2)	0.5(1)
C(35)	0.006(3)	0.50(5)	0.72(4)	0.3(2)
$\mathrm{C}\left(35^{\prime}\right)$	$0 \cdot 038(2)$	0.49(2)	0.81(9)	0.24(3)
C(36)	-0.041(3)	0.54(2)	0.78(1)	$0 \cdot 30$ (5)
$\mathrm{C}\left(36{ }^{\prime}\right)$	0.000(3)	0.44(3)	0.72(2)	0.4(1)
C(37)	-0.038(3)	$0 \cdot 70$ (2)	0.64(1)	0.31(5)
$\mathrm{C}\left(37^{\prime}\right)$	-0.023(3)	0.67(2)	0.75(1)	0.27(3)

Occupancies for all the disordered atoms were fixed to be $0 \cdot 5$.

On the other hand, in the crystal of $8 \mathrm{O}-\mathrm{O} 8^{*}$, the molecular long axis is tilted by 30° in a layer. Among adjacent molecules the planar biphenyl moieties largely overlap each other, and the two polar groups, ester and ether linkages, lie closely to form an antiparallel arrangement of molecules. The disordered chiral chains are interdigitated in the interface of the layers.

In order to estimate the packing efficiencies of each
section in the crystal structures, calculations using the program OPEC [7] were carried out for the atomic coordinates determined in this work [8]. As already mentioned, in the crystal of $8^{*} \mathrm{O}-\mathrm{O} 8$, core moieties and chains are segregated in a layer. Packing fractions are distinctly different between the two regions, 72 per cent for the cores and 58 per cent for the chains, as shown in figure 2 . On the other hand, a smectic-like layer in
(a)

D

(b)

Figure 1. Molecular structures with numbering schemes of non-hydrogen atoms for (a) $8^{*} \mathrm{O}-\mathrm{O} 8$ and (b) $8 \mathrm{O}-\mathrm{O} 8^{*}$. Filled circles denote oxygen atoms.
the crystal of $8 \mathrm{O}-\mathrm{O} 8^{*}$ is further divided into three regions, a layer composed of biphenyl moieties, a layer composed of single benzene rings and normal chains, and a layer composed of chiral chains. Packing fractions
are calculated to be 73,60 and 51 per cent, respectively, as shown in figure 3. Therefore, it is suggested that for 8O-O8* the overlap of planar biphenyl moieties in a layer have a significant effect on the crystal packing.

Figure 2. The crystal structure of $8 * \mathrm{O}-\mathrm{O} 8$ viewed along the c axis. Filled circles denote oxygen atoms. For molecules B and C, only one of the disordered atoms is shown for clarity. The numerical values beside the figure show the packing efficiencies calculated by the program OPEC.

3.3. Crystalline polymorphs of $8^{*} \mathrm{O}-\mathrm{O} 8$

Reflecting a subtle balance of intermolecular interactions, mesogenic compounds sometimes produce crystalline polymorphs. Thus, it is interesting to confirm the thermodynamic status of the crystal structures concerned.

Figure 4 shows DSC traces on heating for a powder specimen as supplied and plate crystals obtained from an acetone-methanol solution for $8 * \mathrm{O}-\mathrm{O} 8$. In the powder sample, there was a broad peak at $60^{\circ} \mathrm{C}$ attributed to a solid-solid phase transition, while the plate crystal showed no anomaly until it melted at $75 \cdot 5^{\circ} \mathrm{C}$. In order to examine the relationships between the two solid states, FT-IR spectral changes with increase of temperature were observed for KBr disks of both a powder sample and plate crystals. The change in wave number in the typical $\mathrm{C}=\mathrm{PdO}$ stretching vibration region are shown in figure 5 . The powder sample and the plate crystals gave quite different behaviour in the lower temperature less than about $60^{\circ} \mathrm{C}$ (dashed line), but they

Figure 3. The crystal structure of $8 \mathrm{O}-\mathrm{O} 8^{*}$ viewed along the b axis. Filled circles denote oxygen atoms. Only one of the disordered chains is shown for clarity. The numerical values beside the figure show the packing efficiencies calculated by the program OPEC.

Figure 4. DSC traces on heating obtained for $8 * \mathrm{O}-\mathrm{O} 8$. Solid and dashed lines indicate the traces for the powder sample and the plate crystal, respectively.
followed similar paths into the isotropic state. Therefore, the plate crystal, the structure of which has been determined in this work is identified as the higher temperature

Figure 5. IR spectral changes in the $\mathrm{C}=\mathrm{PdO}$ stretching vibration region on heating observed for $8 * \mathrm{O}-\mathrm{O} 8$. Filled and open circles denote the values measured for the powder sample and the plate crystal, respectively.
phase, which exists as a supercooled state at room temperature. Furthermore, figure 6 shows the X-ray diffraction pattern measured for the powder sample and the simulated model for the plate crystal based on the crystal structure. Both solid states give obviously distinct patterns, with different layer spacings; $38.4 \AA$ in the powder sample and $34.1 \AA$ in the plate crystal. For 8O-O8*, no polymorphism in the solid state has been found.

3.4. Comparison with related biphenyl esters

The crystal structures of $8 * \mathrm{O}-\mathrm{O} 8$ and $8 \mathrm{O}-\mathrm{O} 8^{*}$ are compared with those of other chiral biphenyl esters, particularly the following three compounds in which biphenyl moieties are sandwiched by alkoxy oxygen atoms and carbonyl groups:

Figure 6. Powder X-ray diffraction pattern (upper) and simulated pattern for the plate single crystal (lower) of $8 * \mathrm{O}-\mathrm{O} 8$.

4-Octylphenyl $\quad 4^{\prime}-[(S)$-1-methylheptyloxy $]$ biphenyl-4-carboxylate ($8^{*} \mathrm{O}-8$)

4-[(S)-2-Methylbutyl]phenyl $\quad 4^{\prime}$-heptyloxybiphenyl-4-carboxylate (7O-5*)

4-[(S)-2-Methylbutyl]phenyl $\quad 4^{\prime}$-octyloxybiphenyl-4-carboxylate (8O-5*)

$$
\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}<\mathrm{COO}
$$

They show the identical phase sequence, $\mathrm{Cr}-\mathrm{SmC}^{*}-\mathrm{SmA}-\mathrm{Ch}-\mathrm{I}$, in spite of their different terminal chains. The tilt angles in the crystal states were reported to be 10° for $8^{*} \mathrm{O}-8$ [8] $\dagger, 30^{\circ}$ for $7 \mathrm{O}-5^{*}$ [9] and $8 \mathrm{O}-5^{*}$ [9]. The biphenyl moieties of $8 * \mathrm{O}-8$ are twisted by $21 \cdot 4^{\circ}$, whereas those of $7 \mathrm{O}-5^{*}$ and $8 \mathrm{O}-5^{*}$ are nearly planar. Thus, similarities are found in $8 * \mathrm{O}-\mathrm{O} 8$ and $8^{*} \mathrm{O}-8$, and in $8 \mathrm{O}-\mathrm{O} 8^{*}, 7 \mathrm{O}-5^{*}$ and $8 \mathrm{O}-5^{*}$. For $8^{*} \mathrm{O}-\mathrm{O} 8$ and $8 * \mathrm{O}-8$, which have the same chiral chain directly linked to the biphenyl moiety, it is considered that the steric hindrance due to the chiral group twists the biphenyl moiety. On the other hand, for the three compounds, $8 \mathrm{O}-\mathrm{O} 8^{*}, 7 \mathrm{O}-5^{*}$ and $8 \mathrm{O}-5^{*}$, in which the normal alkoxy chains directly join to the biphenyl moieties, the biphenyl moieties adopt a planar structure by the conjugation between the alkoxy oxygen atoms and the carbonyl groups.

Taking these characteristics into account, it is concluded that what is substituted to the biphenyl moiety plays a significant factor in controlling the crystal packing and mesophase behaviour, as shown in figure 7. When the bulkiness of the chiral groups twists the biphenyl moieties, the instability of the smectic-like layer structures cause a narrowing of the temperature ranges

Figure 7. The temperature ranges of the mesophases for the chiral biphenyl esters.
\dagger For disordered conformers, one of each pair was included in calculation with geometrically calculated hydrogen atoms.
of the smectic phases to about $28^{\circ} \mathrm{C}$. On the other hand, when conjugation is possible due to the absence of the bulky chiral group near the biphenyl moiety, the layer structures are stabilized, inducing a wider temperature range of the smectic phases $\left(81^{\circ} \mathrm{C}\right.$ for $8 \mathrm{O}-\mathrm{O} 8^{*}, 82^{\circ} \mathrm{C}$ for $7 \mathrm{O}-5^{*}$ and $95^{\circ} \mathrm{C}$ for $8 \mathrm{O}-5^{*}$).

4. Conclusions

As a result of the crystal structure analyses for $8^{*} \mathrm{O}-\mathrm{O} 8$ and 8O-O8*, and comparison with related biphenyl esters, we conclude that the molecules with the biphenyl moieties sandwiched by an alkoxy oxygen atom and a carbonyl group are divided into two subgroups. The position of the chiral group with respect to the core moiety determines whether the conjugation through the biphenyl moiety is possible or not. The existence of the chiral group near the biphenyl moiety probably depresses the stability of smectic phases as observed in $8^{*} \mathrm{O}-\mathrm{O} 8$ and $8^{*} \mathrm{O}-8$. Conversely, the conjugation seems to stabilize smectic phases as in $8 \mathrm{O}-\mathrm{O} 8^{*}, 7 \mathrm{O}-5^{*}$ and 80-5*.

The authors express their thanks to Chisso

Petrochemical Corporation for donating the samples and to Dr Yoichi Takanishi of the Tokyo Institute of Technology for help in the powder X-ray diffraction measurements.

References

[1] Ito, K., and Hori, K., 1995, Bull. Chem. Soc. Jpn., 68, 3347.
[2] Inukai, T., Saitoh, S., Inoue, H., Miyazawa, K., Terashima, K., and Furukawa, K., 1986, Mol. Cryst. liq. Cryst., 141, 251.
[3] Burla, M., C., Camall, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R., and Viterbo, D., 1989, SIR88, structure analysis programs, J. appl. Cryst., 22, 389.
[4] Debaedemaeker, T., Tate, C., and Woolfson, M. M., 1985, MULTAN88, Acta Cryst., A41, 286.
[5] Sheldrick, G. M., 1993, SHELXL93, program for the refinement of the crystal structure, University of Göttingen, Germany.
[6] 1992, International Tables for Crystallography, edited by A. J. C. Wilson, Vol. C (Dordrecht: Kluwer Academic Publishers).
[7] Gavezzotti, A., 1983, OPEC, program for organic packing energy calculations, J. Am. chem. Soc., 105, 5220.
[8] Hori, K., and Ohashi, Y., 1991, J. Mater. Chem., 1, 667.
[9] Hori, K., Takamatsu, M., and Ohashi, Y., 1989, Bull. Chem. Soc. Jpn., 62, 1751.

[^0]: Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
 This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

 The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

[^1]: *Author for correspondence.

[^2]: ${ }^{\text {a }}$ Number of reflections with the 2θ range in parentheses.
 ${ }^{\mathrm{b}} R(F)=\Sigma| | F o|-|F c| / \Sigma| F o \mid$ for observed reflections.
 ${ }^{c} w R\left(F^{2}\right)=\left[\Sigma w\left(F o^{2}-F c^{2}\right)^{2} / \Sigma w\left(F o^{2}\right)^{2}\right]^{1 / 2}$ for observed reflections, where $w=$ $\left[\sigma^{2}\left(F o^{2}\right)+(0.2020 P)^{2}+1.43 P\right]^{-1}$ for $8 * \mathrm{O}-\mathrm{O} 8$ and $w=\left[\sigma^{2}\left(F o^{2}\right)+(0.2998 P)^{2}\right.$ $+0.78 P]^{-1}$ for $8 \mathrm{O}-\mathrm{O} 8^{*}$. $\left(P=\left[F o^{2}+2 F c^{2}\right] / 3\right)$.

